
Performance Evaluation of TL511L64
Jairo Panetta

January 22, 2007

1. Purpose
On late 2006, Saulo Barros finished a new version of the global model, reaching

the main 2006 objective (concerning the global model) of the NEC-CPTEC Agreement:

produce an MPI with OMP version that forecasts 10 days on a Semi-Lagrangean

TL511L64 formulation over a Linear and Reduced Grid with Kuo Convection and Lacis

Radiation using at most 2 hours and 30 minutes of 4 nodes of the SX-6 (32 processors),

maintaining binary reproducibility.

The goal was fully achieved. Under these options and using a time step of 450

seconds, program execution takes 1 hour and 31 minutes (5499s), running at an

effective speed of 83 GFlops (32.5% of the four nodes top speed), with 99.4% average

vectorization ratio and average vector length of 207, requiring 49.8 GBytes of memory,

using 4 MPI tasks (one at each SX-6 node) with 8 OMP threads per task.

While conducting experiments on execution time variation with OMP threads

and MPI tasks, a few program characteristics draw my attention. First, memory

increases with MPI tasks. Second, program does not execute on a single node since it

requires more than 32 GBytes of memory (although each node has 64 GBytes, OS

kernel was configured at 32 GBytes – kernel will be re-configured by NEC personal).

Third, parallel speed-up seems limited, although that was a fragile conclusion due to the

small number of experiments.

On January 19, 20 and 21, I conducted extensive performance experiments to

obtain parallel speed-up data, after modifying source to reduce memory requirements.

This report shows code modifications and performance evaluation results.

2. Code Modifications
One reason for high memory usage was the overestimated size of arrays g and

per at subroutine nlnmi, file NonLinearNMI.f90. These arrays read data from the NMI

file. A tighter memory estimative was given by José Paulo Bonatti, but not precise

enough for parallel runs. Since precise array sizes are scattered over the file, I end up

reading the file twice, once to obtain array sizes and once to store data. Arrays were

precisely allocated before the second file read.

Memory reduction was significant, allowing single node runs.

3. Experiment Setting, Reports and Main Results
Experiments were run on the Empi file, under favorable machine load. Program

was lightly instrumented with FTRACE calls, dividing source in just two regions:

initialization and integration, allowing separate accounting for these two execution

phases.

To reduce experiment execution time, integration was performed for a single day,

starting at 00Z of February 20
th

, 2006.

There are three sources of data for Performance Evaluation: the “Program

Information” report and the two parts of the “FTRACE” report. Program Information

reports on entire MPI processes, while the FTRACE reports on selected execution

phases. The first part of the FTRACE report deals with CPU time information, while the

second part deals with wall clock information and MPI communication. Both reports

were used.

Table 1 below shows measured wall clock time and computed speed-up for the

total run and for each phase of the run. Total execution time is the maximum Real Time

over all MPI processes, as reported by Program Information. Execution time of each

phase was computed as the maximum value of the “Elapsed” column of the second part

of the FTRACE report. Since data is taken from distinct sources, the sum of the

execution times of the phases is not identical to the total execution time, but discrepancy

is negligible (lower than 4 seconds).

Execution Time (s) Speed-up
Processors MPI OMP

Total Initialization Integration Total Initialization Integration

1 1 1 12.285,96 1.093,28 11.192,42 1,00 1,00 1,00

2 1 2 6.401,10 666,25 5.733,19 1,92 1,64 1,95

3 1 3 4.401,88 517,87 3.880,98 2,79 2,11 2,88

4 1 4 3.415,22 445,80 2.966,13 3,60 2,45 3,77

5 1 5 2.816,03 440,77 2.374,85 4,36 2,48 4,71

6 1 6 2.421,56 370,75 2.048,58 5,07 2,95 5,46

8 1 8 1.946,12 332,29 1.611,25 6,31 3,29 6,95

14 2 7 1.264,10 337,20 924,12 9,72 3,24 12,11

16 2 8 1.218,78 341,25 874,40 10,08 3,20 12,80

21 3 7 1.006,02 351,69 653,01 12,21 3,11 17,14

24 3 8 953,32 350,94 600,93 12,89 3,12 18,63

28 4 7 896,28 364,89 529,51 13,71 3,00 21,14

32 4 8 858,72 384,47 471,08 14,31 2,84 23,76

Table 1: Wall Clock Execution Time and Speed-up

Data shows that:

♦ Initialization time does not scale well with increasing processor count;

♦ Integration time scales reasonably within a node (OMP), but requires some work;

♦ The combined OMP-MPI integration scaling is reasonable, but requires some work.

Table 2 below shows memory requirements of each run, in MBytes. Data for

each node is extracted from the “Memory Size” row of “Program Information” reports.

Total is the sum over all nodes.

Processors MPI OMP Total Node 1 Node 2 Node 3 Node 4

1 1 1 27.296 27.296

2 1 2 27.584 27.584

3 1 3 27.600 27.600

4 1 4 27.744 27.744

5 1 5 28.016 28.016

6 1 6 28.160 28.160

8 1 8 28.448 28.448

14 2 7 30.208 15.136 15.072

16 2 8 30.496 15.280 15.216

21 3 7 32.448 11.408 9.696 11.344

24 3 8 32.880 11.552 9.840 11.488

28 4 7 34.672 9.456 7.904 7.904 9.408

32 4 8 35.216 9.568 8.048 8.048 9.552

Table 2: Memory Requirements (MBytes)

Data shows that:

♦ Memory increases at about 160 Mbytes per OMP thread;

♦ Memory increases at about 1GByte per MPI process in excess of the OMP increase.

We proceed by pointing out a few details.

4. Initialization
Table 3 below reports execution times (wall clock) of each thread during the

initialization phase, for executions under a single MPI process. Data is taken from the

“Elapsed” column (first column) of the second part of the FTRACE report.

OMP Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread 7 Thread 8

1 1.093,28

2 666,25 47,82

3 517,87 32,54 32,54

4 445,80 24,21 24,21 24,21

5 440,77 19,71 19,71 19,71 19,71

6 370,75 16,79 16,79 16,79 16,79 16,79

8 332,29 13,31 13,31 13,31 13,31 13,31 13,31 13,31

Table 3: Thread Wall Clock Execution Time during Initialization

Data shows very poor OMP parallelism. Maybe some OMP directive is missing

in the control path during initialization. But data itself is inconsistent, since the sum of

execution times of all threads decreases as OMP thread count increases.

Further investigation is required.

5. OMP Parallelism on Integration
Table 4 below reports execution times (wall clock) of each thread during the

integration phase, for executions under a single MPI process. Data is taken from the

“Elapsed” column (first column) of the second part of the FTRACE report.

OMP Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread 7 Thread 8 Speed-up

1 11.192,42 1,00

2 5.733,20 5.733,20 1,95

3 3.880,98 3.880,98 3.880,98 2,88

4 2.966,14 2.966,14 2.966,14 2.966,14 3,77

5 2.374,85 2.374,85 2.374,85 2.374,85 2.374,85 4,71

6 2.048,59 2.048,59 2.048,59 2.048,59 2.048,59 2.048,59 5,46

8 1.611,26 1.611,26 1.611,26 1.611,26 1.611,26 1.611,26 1.611,26 1.611,26 6,95

Table 4: Thread wall clock execution time during integration

Data shows no variation of wall clock among threads of each run. But since

speed-up is not perfect, further investigation is required. We examine CPU time during

integration.

OMP Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread 7 Thread 8 Sum

1 11.096,86 11.096,86

2 5.595,24 5.595,29 11.190,53

3 3.785,55 3.780,31 3.784,15 11.350,01

4 2.889,64 2.885,15 2.885,22 2.885,04 11.545,06

5 2.343,20 2.349,48 2.342,59 2.342,80 2.342,54 11.720,61

6 1.986,99 1.992,48 1.986,90 1.987,66 1.987,94 1.990,52 11.932,49

8 1.553,50 1.553,59 1.553,37 1.553,37 1.553,27 1.558,89 1.555,76 1.558,06 12.439,81

Table 5: Thread cpu time during integration

Table 5 above contains the CPU time of each thread during integration. Data is

taken from the first part of the FTRACE report. Last column shows the sum of CPU

time over all threads of a run.

Again, CPU time variation among threads is negligible. Either load is fully

balanced among threads or load is unbalanced and threads busy wait for the other

threads.

But the sum of CPU times over all threads steadily increases with thread count.

While this is consistent with loosing speed-up, it does not expose its cause. One

possible cause is a repeated computation (a sequential computation) over all threads.

Table 6 below shows the amount of computing per thread, in GFLOP. Data is

obtained by multiplying column “Exclusive Time” by column “MFLOPS” of the first

part of the FTRACE report. Consequently, it is approximated data. Last column is the

sum over all threads. Variation of the sum among threads is negligible, indicating that if

there is a repeated computation, it is negligible.

OMP Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread 7 Thread 8 Sum

1 41.372,42 41.372,42

2 20.674,96 20.696,99 41.371,95

3 13.741,54 13.820,44 13.809,87 41.371,84

4 10.299,54 10.358,86 10.357,65 10.355,86 41.371,91

5 8.230,97 8.292,48 8.286,67 8.282,04 8.279,94 41.372,10

6 6.861,67 6.904,75 6.904,09 6.899,97 6.896,35 6.905,12 41.371,95

8 5.147,21 5.168,94 5.172,88 5.172,88 5.173,31 5.180,98 5.172,12 5.183,37 41.371,69

Table 6: GFLOP per thread during integration

Further investigation is required. Current available data rules out repeated

computations, but does not indicate the source of parallelism leak.

6. MPI Parallelism on Integration
Table 7 below summarizes communication and computation wall clock time

during the integration phase on MPI runs with 8 OMP threads each. Data is taken from

the second part of the FTRACE report.

Data shows that MPI processes wait idle on communication. It also shows that

communication time, number of messages and total amount of data transfer varies

among processes of a single MPI run. These are typical of load unbalancing.

MPI ELAPSE COMM.TIME COMM.TIME IDLE TIME IDLE TIME AVER.LEN COUNT TOTAL LEN

 [sec] [sec] / ELAPSE [sec] / ELAPSE [MByte] [GByte]

2 874,37 76,70 0,09 11,44 0,01 26,30 13235 340,20

2 874,40 69,52 0,08 12,73 0,02 26,30 13235 340,20

3 600,94 67,27 0,11 14,42 0,02 21,80 14797 314,90

3 600,94 76,61 0,13 20,07 0,03 11,10 26223 283,00

3 600,94 71,45 0,12 15,63 0,03 21,80 14763 314,40

4 471,08 56,85 0,12 10,37 0,02 17,60 16359 281,70

4 471,07 70,20 0,15 21,34 0,05 8,60 27751 234,40

4 471,05 68,48 0,15 21,38 0,05 8,60 27751 234,40

4 471,05 55,38 0,12 10,58 0,02 17,70 16291 281,40

Table 7: Computation and Communication during integration

7. Conclusions
Memory increases with processor count. The increase is more stringent on MPI

processes than on OMP threads.

Parallelism of the initialization phase requires attention.

Parallelism of the integration phase requires further analysis, mainly on OMP

threads. MPI data indicates a load unbalancing problem.

The impact of these imperfections on execution time is presented at Figure 1

below, that shows how the parallel efficiency (% of perfect parallelism) of the

integration phase varies with processor count.

1,000,98
0,96

0,940,94

0,91

0,87 0,87

0,80
0,82

0,78
0,75

0,74

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Processors

E
ff

ic
ie

n
c

y
 (

%
)

Figure 1: Parallel Efficiency of the Integration Phase

Figure shows the damage of combining small scale imperfections on parallelism.

Their constructive interference reduces parallelism gain very fast.

8. Sources

For the 10 days run, source at the SX-6 /gfs/dk15/panetta/gcm/SLSaulo/glinear. Execution at subdirectory run, results at

subdirectory ResNoGrellNoClirad. On the lap top, /home/panetta/CPTEC/MPIOMP/ExperimentosJan2007/ResTL511L64Reduzida,

source at subdirectory Src, results at subdirectory Results.

For the single day run, see the SX-6 /gfs/dk15/panetta/gcm/SLSaulo/SpeedUp directory. Source at subdirectory Src,

results at Results, executions by ZZmit.sh of subdirectory Run. At the laptop, see all subdirectories under the directory

/home/panetta/CPTEC/MPIOMP/ExperimentosJan2007/ResTL511L64UmDia.

This report is at subdirectory Results of the lap top directory described above.

